TheL(p,q)-labelling of planar graphs without 4-cycles
نویسندگان
چکیده
منابع مشابه
Equitable ∆-Coloring of Planar Graphs without 4-cycles
In this paper, we prove that if G is a planar graph with maximum degree ∆ ≥ 7 and without 4-cycles, then G is equitably m-colorable for any m≥ ∆.
متن کاملThe 4-choosability of planar graphs without 6-cycles
Let G be a planar graph without 6-cycles. We prove that G is 4-choosable.
متن کاملPlanar Graphs without Cycles of Speciic Lengths
It is easy to see that planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles are also 3-degenerate. In this paper it is shown, more surprisingly, that the same holds for planar graphs without 6-cycles.
متن کاملPlanar Graphs Without Cycles of Specific Lengths
It is easy to see that planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles are also 3-degenerate. In this paper it is shown, more surprisingly, that the same holds for planar graphs without 6-cycles.
متن کاملExtremal graphs without 4-cycles
We prove an upper bound for the number of edges a C4-free graph on q 2 + q vertices can contain for q even. This upper bound is achieved whenever there is an orthogonal polarity graph of a plane of even order q. Let n be a positive integer and G a graph. We define ex(n,G) to be the largest number of edges possible in a graph on n vertices that does not contain G as a subgraph; we call a graph o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2014
ISSN: 0166-218X
DOI: 10.1016/j.dam.2013.08.039